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ON ADAPTIVE WEIGHTED POLYNOMIAL PRECONDITIONING

FOR HERMITIAN POSITIVE DEFINITE MATRICES

BERND FISCHER ° AND ROLAND W. FREUND 1

Abstract. The conjugate gradient algorithm for solving Hermitian positive definite linear systems is
usually combined with preconditioning in order to speed up convergence. In recent years, there has been

a revival of polynomial preconditioning, motivated by the attractive features of the method on modern

architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds

for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner
to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good

estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This

information is then used to construct a weight function for a suitable Chebyshev approximation problem.

The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of

Bernstein-Szeg_ weights.

Key words, linear systems, Hermitian positive definite matrices, conjugate gradient algorithm, polyno-

mial preconditioning, Chebyshev approximation problem, Bernstein-Szeg/_ weights

AMS(MOS) subject classifications. 65F10

1. Introduction. One of the most powerful iterative schemes for solving Hermitian

positive definite linear systems

(1.1) Ax = b

is the conjugate gradient algorithm (CG) of Hestenes and Stiefel [13], especially when it

is combined with preconditioning [4]. In recent years, there has been much interest in

polynomial preconditioning. The basic idea is as follows: instead of solving the original

system (1.1) by CG, the CG iteration is applied either to

(1.2) q.,(A)Ax=¢(A)b

(left preconditioning), or to

(1.3) A_b(A)y = b, x = ¢(A)y

(right preconditioning). Here _b is a suitably chosen polynomial of small degree. Moreover,

it is required that none of the zeros of _b coincides with an eigenvalue of A. This guarantees

that the preconditioned systems (1.2) and (1.3) are both equivalent to (1.1).

Polynomial preconditioning goes back to the 1950s. It seems that Lanczos [17] was the

first to mention the idea; interestingly, his paper is never referenced. Stiefel [23] used poly-

nomial preconditioning techniques to accelerate eigenvalue computations. Rutishauser [20]
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2 HERND FISCHER AND ROLAND W. FItEUND

proposed an inner-outer iteration process, with CG as the outer iteration and the Cheby-

shev semi-iterative method [12] as the inner recursion. The motivation for his approach was

to reduce roundoff in the classical CG algorithm. In the 1980s, starting with the work of

Johnson, Micchelli, and Paul [14], there has been a revival of Rutishanser's method and

polynomial preconditioning in general, see [21, 7, 19, 2] and the references given there. The

main reason for this renewed interest is that polynomial preconditioning is an attractive

technique on vector and parallel computers (see, e.g., [22]). Each CG iteration involves the

computation of inner products, which constitutes a bottleneck on many modern architec-

tures. Typically, polynomial preconditioning reduces the total number of inner products,

since the multiplication by the preconditioning matrix ¢(A) does not require inner products.

For the Chebyshev iteration in Rutishanser's method, estimates a and b for the smallest

and largest eigenvalues of A are needed. Often, good upper bounds b can be obtained easily,

using simple techniques such as Gershgorin's theorem [21]. It is far more difficult to estimate

the smallest eigenvalue. Saad [21] has proposed a polynomial preconditioning technique that

only requires an upper bound for the largest eigenvaiue, while the trivial bound a = 0 is

used for the smallest eigenvalue of the positive definite matrix A. His technique is based

on least squares polynomials associated with the family of Jacobi weights [24]. Ideally, one

would choose the weight function such that CG for the preconditioned systems (1.2) and

(1.3) converges as fast as possible. However, this problem is not addressed in [21].

Another option is to construct polynomial preconditioners via weighted Chebyshev ap-

proximation problems. This was proposed by Freund [7] who also suggested a heuristic for

adapting the weight function to the eigenvalue distribution of A. The technique exploits the

observation that eigenvalue distributions of Hermitian matrices can be surprisingly well esti-

mated, using only a few steps of the Lanczos method. Actually, spectral estimation based on

the Lanczos process is a widely used technique in applications (see, e.g., [25]). The obtained

estimated eigenvalue distribution is then used to construct a weight function, and finally the

polynomial preconditioner is computed by solving the corresponding approximation problem.

In this paper, we further study polynomial preconditioning based on weighted Cheby-

shev approximation problems. In particular, we investigate the use of Bernstein-Szeg5

weights [24]. For such weights, the solutions of the associated approximation problems

are known explicitly. Therefore, the construction of preconditioning polynomials based on

Bernstein-Szeg5 weights does not involve the numerical solution of an approximation prob-

lem.

The remainder of this paper is organized as follows. In § 2, we recall some basic prop-

erties of CG, and we discuss Chebyshev polynomial preconditioning. In § 3, we present our

approach to polynomial preconditioning based on weighted Chebyshev approximation prob-

lems, and we propose a procedure for obtaining a suitable weight function from the Lanczos

process. This technique involves the construction of a monotone interpolant. In § 4, we

briefly describe a procedure for monotone piecewise cubic interpolation. In § 5, we consider

polynomial preconditioners based on Bernstein-Szeg5 weights. Finally, in § 6, we make some

concluding remarks.

Throughout the paper, it is assumed that A in (1.1) is a Hermitian positive definite

N x N matrix, with real or complex entries. As usual, M n denotes the conjugate transpose
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of a matrix M. The vector norm Ilxll= _ is always the Euclidean norm. Finally, we

denote by

the set of all complex polynomials of degree at most n.

2. CG and Chebyshev polynomial preconditioning. In this section, we collect

some basic facts about CG, and we review Chebyshev polynomial preconditioning.

2.1. The CG algorithm. Let x 0 • C N be any initial guess for the solution of (1.1),

and let r 0 := b- Ax o be the associated residual vector. The CG algorithm generates iterates

of the form

(2.1) x,, = x o+X,,(A)ro, where X,, • P,,-I, n = 1,2, ....

The corresponding residual vectors are given by

(2.2) r, = $.(A)ro, where ¢,(A) -- 1 - $X,,($).

In exact arithmetic, the CG algorithm terminates after a finite number of steps with the

exact solution x L = A-lb of (1.1). In the sequel, L always denotes this termination index.

We remark that L is just the minimal number of components in any expansion of r 0 into

orthonormal eigenvectors vj of A, and thus we have

L

(2.3) r 0=_ajvj, where aj#0 for all j.
j=l

In particular, L < N. In the following, we always assume that the vectors vj have been scaled

such that aj > 0 in (2.3). Furthermore, we denote by Aj the eigenvalues corresponding to

v_, i.e.,

(2.4) Avj = Ajvj.

Clearly, the Aj's are distinct, and from now on, we assume that they are numbered in

increasing order:

A 1 < A 2 < -.. < A L.

The CG iterates are optimal, in the sense that rn, A-lr,, is minimal for all possible

iterates of the form (2.1). This minimization property can be shown to be equivalent to the

following orthogonality relations:

(2.5) r_r k=O for all n,k=O, 1,...,L, n#k.

Using (2.2), (2.3), and (2.4), we can rewrite (2.5) in the form

(2.6) (¢,,¢k)=0 for all n,k=O, 1,...,L, n#k,
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where

(2.7)

(¢,,, Ck):= roH¢.(A)¢k(A)ro

L

= fR¢.(,Xl¢,,(,Xld,,(,X).
j=l

The distribution function a(A) in (2.7) is defined by

L _ 1 forA>__O,
(2.8) a(A) = _ a].H(A - Aj), where H(A) = I. 0 otherwise.

j=l

We now turn to polynomial preconditioning. For simplicity, we will focus only on right

preconditioning (1.3), but essentially the same statements remain true for left preconditioning

(1.2). From now on, it is always assumed that p > 1 is a given integer, and we consider

preconditioning polynomials ¢ E :Pp-1 in (1.3).

2.2. Chebyshev polynomial preconditioning. The standard approach for the de-

sign of preconditioners is to choose the polynomial ¢ in (1.3) such that Adz(A) is in some

sense as close as possible to the identity matrix I. For instance, one could attempt to

minimize the Euclidean norm III- Adz(A)II. However, the solution of this problem would

require the knowledge of all eigenvalues of A. Therefore, one usually substitutes for the

spectrum of A an interval [a, b], where 0 < a < A1 and b > AL. This leads to the Chebyshev

approximation problem

(2.9) rain max I_0X)I
_ePp:_,(o)=I Xe[a,b]

where _(A) -- 1 - Adz(A). It is well known that the optimal solution _p of (2.9) is just a

suitably shifted and normalized Chebyshev polynomial of the first kind, and we have

Tv(e(A)) b+a- 2A and _ =/_(0).
(2.10) _p(A) = T--_ ' where i(A) = b-a

Note that the spectrum of the preconditioned matrix Adzp(A) is contained in the interval

1 1

(2.11) [ap, bp], where ap := 1 Tp(() and bp := 1 + --"p,','r'tJr---X"

In view of the optimality properties of the CG algorithm, n steps of CG applied to

the preconditioned system (1.3) can at best give the same residual vector as np steps of

CG applied to the original system (1.1). As in (2.2), let r,,p = ¢,,p(A)r 0 denote the residual

vector obtained alter np steps of CG applied to (1.1). Similarly, let r(,P} = ¢_P)(Adzp(A))r 0 be

the nth residual vector generated by CG applied to (1.3). Obviously, Chebyshev polynomial

preconditioning is indeed best possible, provided that the residual polynomials era, and ¢_)

satisfy

(2.12) ¢,v(X) -- ¢_P)(xCp(A)).
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Next, we show that (2.12) is fulfilled if the distribution function a($) in (2.8) corresponds

to the worst-case distribution.

The function a($) is a step function with jumps at the eigenvalues of A. For our

discussion, we treat a(A) as a continuous function, and we denote by

-

the corresponding density function. Actually, since the dimension of A (and thus L) is

usually large, the step function "looks like" a continuous function. From potential theory, it

is known that the worst-case distribution for an interval is the equilibrium distribution, and

for the case of the unit interval, this is given by

(2.13) dE(t) = arcsin(t), t e [-1,1].

Furthermore, the orthogonal polynomials with respect to the corresponding inner product

are the Chebyshev polynomials of the first kind, and we have, for all integers n, k > 0, n _ k,

(2.14) 1 T,(t)Tk(t)_E(t)dt = 0, where _E(t) = _.

We remark that (2.14) can be evaluated by means of Gaussian quadrature. This gives

(2.15) b-a2 f_-i T.(_)Tk(_ )T"(t)Tk(t)ff_(t)dt = j=zaj_2T"(£(2J))Tk(£()_J))_ ,
n,k<L.

In other words, for the distribution function defined by (2.15), the CG residuals correspond

to Chebyshev polynomials. We remark that in this case the standard error bounds (see,

e.g., [11]) for the CG iterates are sharp.

Next, we show that for the worst-case distribution the relation (2.12) is indeed satisfied,

and hence Chebyshev polynomial preconditioning is optimal in this case.

LEMMA 2.1. Let ep denote the linear mapping that maps [%,bp] (cf. (2.11)) onto

the unit interval [-1,1] and let _p = £p(O). Let ¢,p()_) - T,,p(e(,_))/T=p(_) and ¢(P)()_) =__

T,,(ep()_))/T,,(_p) be the shifted and normalized Chebyshev polynomial on [a,b] and [ap.bp],

respectively. Then the identity (2.12) is satisfied.

Proof. From (2.11) and (2.10) one readily obtains

_:

Equation (2.12) then follows from the well-known identity T,,p(t) - T,,(Tv(t)). 0

3. Weighted polynomial preconditioning. As discussed in the previous section,

Chebyshev polynomial preconditioning is optimal for matrices A, for which the function

a(_) in (2.8) is the worst-case distribution. However, in practice, linear systems, especially

those arising in the numerical treatment of partial differential equations, have eigenvalue dis-

tributions that are far from the worst case. For those, Chebyshev polynomial preconditioning
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is not optimal. Furthermore, it is known [1] that repeated applications of Chebyshev poly-

nomials will transform any given distribution into the worst-case distribution. This behavior

is also reflected in Chebyshev polynomial preconditioning. If A has a favorable eigenvalue

distribution then the eigenvalue distribution of the preconditioned system is usually much

closer to the worst case.

In this section, we propose a heuristic for adapting the preconditioning polynomial to

the actual eigenvalue distribution of A.

3.1. Weighted Chebyshev approximation problems. Instead of (2.9), we now

consider weighted Chebyshev approximation problems of the form

(3.1) min max [zi,(A)_p(A)I.
_erp:_(0)=i_e[a,b]

Here ffJis a continuous weight function on [a,hi,and itis always assumed that t_(A) > 0

on the open interval (a,b). Standard resultsfrom approximation theory (see,e.g.,[18])

guarantee that there existsa unique optimal polynomial _p for (3.1).In general, _p isnot

known explicitly,and one needs to solve (3.1) numerically,for example, using the Remez

algorithm (see,e.g.,[18,10]).

Ift_(A) = i, then the shiftedand scaled Chebyshev polynomial (2.10)isthe solutionof

(3.1).The idea now isto use the optimal solution_p as a polynomial preconditioner,where

the weight function t_ is chosen based on an estimate for the density _ of the eigenvalue

distribution of A. It is more convenient to rewrite (3.1) for the unit interval [-1, 1] instead of

[a, hi. Using the transformation l(A) defined in (2.10), we obtain the approximation problem

(3.2) min max Iw(t)_,,(t)h _ ¢ [-1,1].
_pePp:_(_)=1te[-1,1]

Itremains to give a heuristicfor the choiceof the weight function w in (3.2).Ifthe estimated

density _ of A happens to be the worst-case density 6 E (cf. (2.14)), then the solution of (3.2)

should yield the optimal preconditioner for the worst case. As shown in § 2, Chebyshev

polynomials are optimal in this case. Clearly, the weight function should be constructed

such that w(A) = 1 if/_(t) = 1/V_ - t 2. Therefore, we suggest the choice

(3.3) w(t) - _(t)v_ - t2.

3.2. Estimating the distribution function. Usually,a good estimate for the eigen-

value distribution a(A) in (2.8) can be derived from the quantities generated by relatively

few steps of the Lanczos process [16]. Actually, since the Lanczos algorithm is equivalent to

CG, we can extract all necessary information from a few steps of the CG algorithm applied

to the original system (1.1).

Suppose we have run CG for n steps. Then it has generated the entries of the n x n

tridiagonal Lanczos matrix

(3.4) T. =

al /32 0 -.. 0

".. :
o ".. ".. o
" "'" "'" "'" /_n

0 -.. 0 /_. a_
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The eigenvalues of T n (the so-called Ritz values) are all distinct, and we assume that they

are numbered in increasing order:

01 <02<'"<0n.

Let s i be a set of corresponding orthonormal eigenvectors, i.e.,

= I1 ,11= 1,

Moreover, we assume that the si's are normalized such that their first components, ri := (Hi)l,

are all real and nonnegative.

It is well known that the CG residual polynomials ¢0, ¢1,-", ¢, (cf. (2.2)) are orthog-

onal with respect to the discrete inner product induced by T,. More precisely, we have

(3.5) (¢j,¢k),=O for all j,k=O, 1,...,n, j_k,

where

(3.6)

(¢j, Ck).:= e ¢k(T.)C(T-)el

=
i=1

The distribution function r(A) in (3.6) is defined by

r(A) - __,r_H(A - Oi),
i=1

where H is given in (2.8). It can be shown that (-, .), and the inner product (., .) in (2.7)

have the same (modified) moments up to degree n - 1, i.e., for all real polynomials ¢ of

degree at most n - 1, it holds that

(3.7) (I,¢),,-- (i,¢).

We can then apply a result by Karlin and Shapley [15, Theorem 22.1], which, roughly

speaking, states that the step function r(A) has to be close to a(A). More precisely, their

theorem states that the condition (3.7) implies that a(A) - r(A) has at least n - 1 sign

changes in [A,,_,(A),Am_,(A)]. Here, Amin(A) and Am_,(A) denote the smallest and largest

eigenvalues of A, respectively.

Therefore, we use a monotone Cl-interpolant of the step function T(A) as our estimation

for the eigenvalue distribution a of A. For simplicity, we again transform the interval [a, b]

to the unit interval [-1, 1], using the linear map l(A) defined in (2.10). We note that we

only require that the lower bound a is nonnegative. In particular, the trivial choice a = 0 is

feasible. Since the largest Ritz value 0 h is usually a good approximation for Am_,(A), we set

b := 0,. Finally, we always denote by f(t) the estimate for the eigenvalue distribution a(A)

transformed to [-1, 1].
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The interpolating points are chosen as follows. We set

0 for i = 0,
ti:= g(0_) for i = 1,2,...,n- 1,

1 for i = n,

and

0 for i = 0,

i--1

0,:= r?/2+y_r_ for i = 1,2,...,n- 1,
j=l

1 for i = n.

The estimated distribution is then chosen as a monotone function f E C 1[-1, 1] satisfying

(3.8) f(ti)=Oi, i--O, 1,...,n.

4. Monotone piecewise cubic interpolation. One obvious choice for the interpolat-

ing function f is a monotone piecewise cubic interpolant. In this section we briefly describe

how to construct such a function. We follow the derivation of Fritsch and Carlson [9] and

Fritsch and Butland [8].

Let-l=t o<t 1 <...<t,=l and0=0 0<01 <...<0,,=1 be given. Our goal is

to construct a piecewise cubic function S E C1[-1, 1] such that

(4.1) S(ti)=tgi, i=O, 1,...,n,

and S is monotone on [-1,1]. To this end, let h i = t_+1 - t_ and A i = (Oi+ _ - tgi)/hi, i =

O, 1,..., n-1. The trick is to express S, on any subinterval [ti, ti+l] , in terms of the derivatives

d, = S'(t,), i = 0,1,...,n, (cf. [9])

By construction, any choice of the free parameters d i leads to a function S E C1[-1, 1] that

fulfills (4.1). The remaining step is to adjust the d_'s such that S is monotone on [-1, 1].

In the literature one can find several schemes for computing the (not uniquely deter-

mined) d i. Here we used a formula proposed by Brodlie [3] and Fritsch and Butland [8]:

Ai-aAi for Ai_IA i > 0,
(4.2) d i = (iAi + (1 - (i)Ai_,

0 otherwise,

i = 1,2,...,n - 1,

where (i = (hi-, + 2hi)/(3(hi-1 + hi))" In addition to (4.2), we still need to choose the

boundary conditions do and d,. Since we have no information about the endpoint derivatives

available, we select a (weak) version of the so-called "not-a-knot" condition (cf. De Boor [5,
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pp. 54]). Here one chooses d o and d, such that S is twice continuously differentiable on

[to, t2) and (t,,_2, t,l, respectively. One obtains

= h--9-°(3A, - (2d 1 + d2)) + 3A0 - 2dl,do

(4.3) 'Oih._i(3A. 2 --(2d. i + d.-2)) + 3A. i --2d. i.
d,, - h,_2 ....

However, this special choice of d o and d, does not necessarily produce a monotone S on the

subintervals [to, tl] and [t,_,, t,], respectively.

Note that the additional requirements d o E [0, 3Ao] and d,, E [0, 3A,,_,] will lead to a

monotone function. Thus, if, e.g., d o (computed by (4.3)) turns out to be negative or bigger

than 3A0, we simply set d o = 0 or do = 3A 0, respectively.
We would like to mention that FORTRAN versions for the described procedures are

available in NETLIB (PCHIP package).

Finally, we set 6(t) = S'(t), where S is the computed monotone interpolant, and then

define the weight function w(t) = w(t; S) by (3.3). The desired polynomial preconditioner

is then obtained by (numerically) solving the resulting weighted Chebyshev approximation

problem (3.2).

5. Bernstein-Szeg5 weight functions. In the preceding section we first approxi-

mated the distribution function and then solved the resulting approximation problem (3.2)

numerically. Here we follow a different approach which will eliminate the latter approxima-

tion process. The idea is to restrict the weight functions to a class, for which the solution

of the Chebyshev problem (3.2) is explicitly known. We consider three classes of weight

function that fulfill this requirement.

Let Pk be a real polynomial of degree k with pk(t) > 0 on [-1, 1], and define

(5.1) So(t )-1, sl/2(t)----V_+t, s1(t)---v/l-t 2.

Then (3.2) can be solved explicitly for the so-called Bernstein-Szeg5 weight functions

si(t) j E {0,1/2,1};

(5.2) w,(t) =

see Szeg5 [24], Freund [6], and the references given therein. More precisely, the solution _p

of (3.2) with respect to wj, j E {0, 1/2, 1}, is explicitly known for p > pj, where

0 ifj=landk=0,PJ = [(k + 1)/2- jJ otherwise.

For convenience, in the sequel, we allow Pk to have (simple) zeros at the endpoints

4-1, i.e., the cases j = 0, 1/2 are now included in the case j = 1. Therefore, we will only

investigate weight functions of the form

V_- f2
(5.3) ,,,(t)-

qpk  )
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In view of (3.3), we have to adjust Pk such that

(5.4) f(_) - dt1 pk(t)

fulfills the interpolatory conditions f(tj) = Oj (cf. (3.8)). Note that f, defined by (5.4), is

"automatically" monotone on [-1, 1], and that f(-1) = 0 for every Pk.

It turns out to be advantageous to express Pk in terms of its zeros

m l

(5.5) pk(t)=a,,+l II(t--aj) l"I(t-- zl)(t---_S) , k=m+ 21.
j=l S=1

Here, as, j = 1, 2,..., m, are the real zeros and z s = x s + iyj, YS > 0, j = 1, 2,..., l, are the

complex zeros in the upper half plane. The partial fractions expansion of (5.4) reads

(5.6) am+l j=l j..---1

= F(,_; al,... , am+l, Xl,.--, xl, Yl,''', Yl),

where

1

AS=p_(aj)' j=l,2,...,m,

Bst + Cj = P'k(-sJ)(t- -sj)+ p'k(zj)(t - zj) j = 1,2,... I.
p_(zj)p_(:j) ' '

It is readily verified that all integrals in (5.6) have an explicit antiderivative. We omit these

routine, but somewhat lengthy, calculations.

Now the interpolatory conditions f(ti) = 01 (cf. (3.8)) and the positivity constraints

pk(t) > O, t e (-1, 1) lead to the following nonlinear constraint interpolation problem:

find real numbers al,...,am+ 1,xl,...,x I,yl,...,yt subject to

(5.7)
F(tj;al,...,a,,,+l,Xl,...,xt,yl,...,yt)=Oj, j=l,2,...,n,

[asl>l, j=l,2,...,m,
IT&

sgn(am+l) = (-1) m 1"I sgn(aj),
S=l

yj>0, j=l,2,...,1.

Apart from the sign conditions, the problem (5.7) can be viewed as a nonlinear system of n

equations in k + 1 = m + 1 + 21 unknowns. Therefore, a natural choice of the polynomial

degree is k = n - 1. Also, we would like to mention that (5.7) does not address the problem

of (possible) multiple zeros at -4-1. However, this problem never occurred in our experiments.



ON ADAPTIVE WEIGHTED POLYNOMIAL PRECONDITIONING 11

The success of any nonlinear solver applied to (5.7) depends strongly on good starting

values. We will now describe a (linear) method for obtaining such values. In view of (5.4)
we have

and consequently

(5.8)

pk(,_)f'(k) -- V/T_ ,_2

Hence, by integrating (4.8) and using f(-1) = 0, we obtain the identity

f(5.9) ek(A)I(A)- + g(A),
!

where g( _ ) - f_l _ - t2dt. Setting

(5.10)

in equation (5.9) gives

k

j=O

7j()_;f)- f_:tJ-lf(t)dt

k

(5.11) _--_bj (_Jf(A)-jTj(A;f)) =_ g(A).
j=O

Then we end up with a semiinfinite linear problem:

find real numbers bj, j = 0, 1,..., k, subject to

G(t: bo,..., bk) = O, i= 1,2,...,n,

(5.12) k
_]bjtJ > 0, t • (-1,1),
j=O

where

k

G(t,; bo,. .. ,bk) = E bj (t_O, - jTj(t,; f)) - g(t,).
j=O

The price paid for the linearity of the problem are the infinitely many constraints. In addi-

tion, we have to evaluate the integrals O'j which involve the unknown function f (cf. (5.10)).

To overcome this problem, we approximate f by a monotone piecewise cubic function S, as

described in § 4. Clearly, the resulting integrals 7j(A; S) are easy to compute.

A straightforward approach for attacking semiinfinite problems is to replace the infinitely

many constraints by a finite subset. Finally, after relaxing the interpolatory conditions

slightly, we obtain the following linear programming problem:



12 BERND FISCHER AND ROLAND W. FREUND

find real numbers bj, j = 0, 1,..., k, subject to

G(ti; bo,... , bk) = min!,
i=1

(5.13) G(ti;bo,...,bk) > 0
k

Eb i >o,
j=O

i = 1,2,...,n,

ti E (-1,1), i = 1,2,...,M.

It is not hard to check that the feasible set of (5.13) is not empty, and hence (5.13) always

k b_t j. Here the second parameter M indicates that p_, dependshas a solution p'k(t; M) - _,j=o

on the number of positivity constraints. Unfortunately, it is possible that p_:(t; M) has zeros

in (-1, 1). Here, one basically has to distinguish between the cases that p*k(t; M) has one zero

# in the first (last) interval (- 1, tl) (( _M, 1)) or two zeros #1, #2 in (ii, ti+l), i e { 0, 1,..., M },

where t0 := -1 and tM+l := 1. Such zeros can not be used as starting values for the nonlinear

problem (5.7). Therefore, we replace # by -1 or 1 and the real zeros #1, #2 by the complex

zeros z = (#1 + #2)/2 + ie, -2, where e is some small positive number. Notice that

(t - #,)(t - #2) - (t - z)(t - -e)= 1 li,- + < - +

For sufficiently large M and sufficiently small e, this "zero-substitution" only slightly per-

turbs p'k(t; M).

In our experiments, we always chose the ti's as Chebyshev knots with M = 200. The

corresponding linear solution p'k(t; M) always served as a good starting guess for the nonlinear

solver applied to (5.7).

6. Concluding remarks. On modern architectures, it is attractive to combine the con-

jugate gradient algorithm with polynomial preconditioning. In this paper, we have presented

an approach for adapting polynomial preconditioners to the actual eigenvalue distribution

of the coefficient matrix of the linear system. Our technique is based on the observation

that good estimates for the eigenvalue distribution can be derived after only a few steps of

the Lanczos process. We then use this information to construct a weight function for a suit-

able Chebyshev approximation problem. The solution of this problem yields the polynomial

preconditioner. We have explored the use of Bernstein-Szeg5 weights.

This manuscript is still a preliminary and incomplete version. In the final paper, we will

also include numerical results.

Acknowledgement. We would like to thank Youcef Saad for bringing reference [17] to

our attention.
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